Building Mars: Modeling Permanent Structures Using Mars-Sourced Materials (Issue #37)

Guest Blog By: Lorena Bueno

Edited by: Margaret Lattke

Crack open any mid-level science novel from the last 70 years and you’ll find, among fanciful descriptions of grand canals and sand-scattering weather systems, varied descriptions of what’s underfoot (or boot): Martian sand. Regolith, powder, basalt rock, even clay, hint at a time when Mars had enough water and geologic activity to create clay.

As we plan our first trips to Mars on Earth with the Mars Desert Research Station (MDRS) of the Mars Society, the next few missions on Mars will give us more data on the clay deposits of our near neighbor. With this data we can add clay-based structures to our plans of more permanent structures.

What can we do with clay?

If the clay deposits are significant enough, this ancient building material may give us one of the first resources we can use to help protect and define the boundaries of our research and colonization outposts. While our first clay bricks may be as handmade as those first made on Earth, we’ll bring with us approximately 9,000 years of advanced knowledge and technology. We’d start by studying how clay behaves in the environment of Mars before and after it is shaped into usable chunks. A team of engineers at the University of California San Diego has already created no-bake brick samples out of simulated “Martian Soil”.

While ancient Earthlings mixed, shaped, and dried their bricks outside in sunny, warm climates, that won’t work as well on Mars. We’ll need to create processes on Earth to simulate the kind of brickworks we can create in Mars’ atmosphere (1/100th of our atmosphere here on Earth) or in a pressurized habitat. These experiments will help us figure out how to keep the mixture of clay, water, and other ingredients together long enough to be shaped and finished.

After test bricks of various recipes are created, we’ll simulate how well the bricks wear in a Mars-like environment. First, each type of brick will be tested individually to see how it reacts to the extreme heat and freezing cold temperatures characteristic of a typical Martian day during any season.

Next, we’ll subject the bricks to weather testing: blowing the bricks through a series of Martian storms. Despite what we’ve seen in the movies, the winds of Mars don’t do nearly as much damage as a comparable storm on Earth. Winds on Mars don’t get higher than 60 or 70 miles per hour. That much wind speed on Earth would knock you over! But with Mars’ 1% atmospheric pressure, 60 mph on Mars would feel like 6 mph on Earth just about enough to launch and fly a medium-sized kite.

Then we’ll move on to testing bricks in groups. Studying bricks of different sizes and shapes, set up as solid walls and berms, will determine how they withstand the weather, wind, and dust storms of Mars. We may even skip shaping blocks directly, and simply make a brick “mix” that can be sprayed or extruded into the shapes we need to build our permanent structures.


Building walls on Mars … with math

Constructing a protective barrier from Martian-sourced bricks provides its own special engineering challenges. Modern bricks on our planet are bound together using specialized adhesives and mortars; Mars’ thin atmosphere makes those solutions unworkable.

The solution lies in the way the bricks are shaped and stacked. Interlocking bricks, laid in deep, long patterns, can be built up enough to serve as weather berms. By directing the worst gusts of stronger windstorms away from habitats or remote sensor arrays, we can extend the life of the buildings we bring from Earth.

Simple structures can be built with a combination of Earth and Mars materials as well. While we have to live in pressurized habitats, movable equipment, such as rovers or trailers, may only need a simpler protective shelter. Picture a basic structure made up of brick walls topped with solar panels. These shelters can be built around a metal or composite frame with a protective door to keep out the worst of the blowing sands.

We can set up a series of emergency maze-style shelters as well. A shelter you can drive in and out of, designed to keep sand out during a sudden storm. Stage these along known trails or byways to help keep travel between far-flung sites safe.

Though solar panels are a popular means for capturing energy in most of our plans for Mars, we can also corral and use the energy created by the planet’s vast winds. Mars-made bricks might be used to create funnels designed to speed wind through specialized wind turbines, hardened to work on Mars and provide power backup during the worst of the hemispheric or global storms.

Reducing the costs of exploration – Getting more with less

As a species, every dollar we spend learning and exploring lifts us higher. Once we’ve done the hard work of getting the first explorers to our neighboring planet, everything we do there, along with the support of those teams, will make it easier for the next generation of explorers and humans watching from afar.

As humans, we’ve spent our history expanding our horizons, finding new ways to innovate and grow. Taking that tradition, and all we’ve learned, to Mars and beyond, is in our DNA. Sure we can send modules, supplies, food, and people to Mars. However building or augmenting or augmenting permanent structures from local materials gives us more than a way to save money; we can learn from and apply science in the field and export it back “home”.

~Humans to Mars as a Bridge to the Stars



Research links:

Image Credits: IB Times, The Mars Society



Origin of Life Theories and Mars Exploration (Issue #36)

Guest Blog by Bob Bruner

Bob Bruner has attended and presented at the scientific conferences described below since 2015.  His contribution is entitled “Special Exhibit on Meteorites and Minerals associated with the Origin of Life on Earth or Mars” and can be found on the web. He is a long-time member of the Mars Society and is a volunteer at the Denver Museum of Nature and Science.

I would like to offer a special THANK YOU to Mr. Bruner for traveling the world to bring us this first hand report and his tireless passion in the pursuit of scientific knowledge. 


Four popular origin of life theories that have influenced the hunt for life on Mars.  The first are the clay theories which probably started in the late 1950’s with Dr. Bernal of the UK.  They were further developed in the 1970’s and 1980’s by Dr. Cairns-Smith of the UK, then in the 1990’s by Dr. Ferris of the USA.  They were added to in the 2000’s by Dr. Hashizume of Japan and Dr. Hansma of the USA.  The theories claim that the structure of clay can provide compartments for proto life to begin, with large molecules like RNA developing later.

The second are the Black Smoker-type hydrothermal vents at the bottom of the ocean theories primarily developed by Dr. Wachtershauser of Germany with an emphasis on iron-sulfur and Dr. Mulkidjanian of Germany with an additional emphasis on zinc.  These theories claim that the minerals have the ability of powering the chemical reactions that allow small organic molecules to get larger and larger, ultimately becoming proto life.  They were popular in the 1980’s and 1990’s.

The third are the warm hydrothermal vents at the bottom of the ocean theories primarily developed by Dr. Russell of the USA, Dr. Sleep of the USA, Dr. Schulte of the USA, and Dr. Holm of Sweden.  These theories took off when the Lost City hydrothermal field was discovered by Dr. Kelley of the USA in the 2000’s.  The process of serpentinization, where olivine/pyroxene interacts with CO2 and sea water to produce serpentine, magnetite, brucite, CH4 and H2, gives new proto life energy and food.

The fourth are the surface hydrothermal pool theories which probably started with Darwin in 1859, but gradually fell out of favor until revived by Dr. Deamer and Dr. Damer of the USA in 2016.  They envision small areas of land above a mostly-ocean Earth which contain warm pools interacting with the surrounding environment creating wet-dry cycles which create ever larger organic molecules, ultimately becoming proto life.  Opaline silica and geyserite and sinter line hydrothermal pools.

For many years the clay theories dominated the hunt for life on Mars, not only as proof of water (the existence of clay proves past water) but lately in the case of montmorillonite as a source of food for microbes according to Dr. Craig of the USA.  The next hot theory was black smoker-type hydrothermal vents where abundant life forms were spotted by expeditions to the bottom of the sea.  But some scientists said the hot water would not allow large molecules like RNA to develop.  Then came the warm hydrothermal vents where the water was not too hot for large organic molecules to develop. This theory became the most popular theory because life would be protected from bad things happening on the surface such as bombardment by asteroids and comets.  In fact it was adopted by the Europeans in their roadmap ASTROMAP published in 2015.  But in 2016, the idea that surface hydrothermal pools provide required wet-dry cycles started to dominate.  At the NASA Biosignature Conference in 2016 this idea dominated the conference report so much so that the warm hydrothermal vent people asked for a pre-meeting to produce their own report about rock-

Three Finalists for Mars 2020 Landing Site

water interaction before the 3rd Landing Site Meeting for the Mars2020 rover in 2017.  Even so, the landing site Columbia Hills was still promoted to third place over other sites which had more votes because of the work done by Dr. Van Kranendonk and Dr. Walter of Australia and Dr. Farmer and Dr. Ruff of the USA.  At the 4th Landing Site Meeting for the Exomars 2020 Rover in 2017, the only theory NOT promoted was the Black Smoker-type hydrothermal vent theory.

As one can see, politics among scientists have influenced landing site decisions and have no place if good science is to emerge.  If a voting system was agreed to ahead of the conference, it should be followed.  It was followed at the 4th Landing Site Meeting for Exomars 2020, but it was not followed at the 3rd Landing Site Meeting for Mars2020.

[Image Credit:, Exploring Earth, NASA]


Note and Reference: The key minerals for obiters and rovers on Mars are clays (montmorillonite), serpentine, and opaline silica. See my abstract at   scroll down to EANA 2016 abstracts on page B8.


SLC4 The Comeback Kid (Issue #35)

Guest blog by Dale Hammond

Dale Hammond 1This following describes how a California launch facility and a pair of accidents there spoke less about failure and more about the resilience and perseverance of human efforts in orbital space and beyond. Accidental failure occurred not once but twice in the same place within a span of just eight months. But rather than pointing to defeat, the recovery of that facility and the people who worked there led to new and innovative solutions: booster reusability by SLC 4’s current occupant SpaceX and subsequent cost reduction in delivery of payloads to orbit, which is considered paramount to the colonization of Mars. It may also lead in some distant future to the SLC being known in planetary legend and lore as a place that would not go away, that was once and will always be “The Comeback Kid.”  

Space Launch Complex 4, or SLC 4, Vandenberg Air Force Base, began its career as a launch facility for Atlas and Titan rockets. In 1963 two platforms were constructed within the complex: PALC2-3 and PALC2-4. Later, those became what they are known today: SLC 4e and SLC 4w. That whole chapter lasted for 42 years, and then SLC 4 was deactivated. In 2011 it was reactivated, to be leased and refurbished/rebuilt by SLC 4’s next chapter, SpaceX.

Dale Hammond 2Overall, the PALC/SLC years were good and confidence was high. There were 161 launches at the complex, including the Titan family and the Atlas family of launch boosters. And if this graph from showing worldwide launches per year is any indication, the past performance of the PALC/SLC tracked, if not improved on, that launch history. Hence, one might assume, like the worldwide success rate, the overall success rate at SLC 4 through 2005 sat at least around 95%.

However, space presents a well-known slim margin of error. As Gary Payton, Deputy Under Secretary of the Air Force for Space Programs said, “Launch reliability is my top priority. Our constellations for any of our missions cannot tolerate a launch failure.” Further, boosters are not a dime a dozen. Richard M. Rocket, co-founder and CEO of New Space Global, speaking in the wake of a 2015 launch failure said, “It’s not like you can just jump to another launch vehicle.” Each booster is one of a kind, designed for a single purpose and a specific payload. In such a world, failure is not an option: when failure comes, it’s painful.

Dale Hammond 3But failure, it should be said, is a necessary stepping stone to achieving dreams, whether they are orbital space, lunar exploration, or Mars exploration and colonization. Correspondingly, if there are any years in the American Space program that best embody that characterization, 1985-1986 could be called “model stepping stones.” The most tragic and most publicized incident was the untimely demise of the Space Shuttle Challenger on January 28, 1986. It caused a suspension of the shuttle program for 32 months and formation of the Rogers Commission, appointed by President Ronald Reagan and assigned the task of discovering what exactly went wrong.

As for Vandenberg Air Force Base in the wake of the Challenger accident, it was dealt an indirect but personal blow as the Air Force elected to cancel use of Vandenberg’s Space Launch Complex 6 (SLC 6) for classified Shuttle military launches. Less known of that period are the ’85 and ’86 launch accidents at SLC 6’s Vandenberg neighbor, SLC 4.

Dale Hammond 4By the middle of 1985 at SLC 4, no Titan had failed in 18 years. Then August 18, 1985, came along. At SLC 4e a Titan 34D-7 was poised on the launch pad carrying a KH-11 photo-reconnaissance satellite. The mighty Titan lifted off and had a good flight – but not for long. In rapid succession, an unplanned complete engine shutdown, a computer glitch and a premature stage separation led to the Titan tumbling disastrously toward land. At T+272 seconds the destruct command was given, and not long afterward, the Titan sank to its permanent residence, a Pacific grave. Its team, that group of dedicated scientists, engineers and technicians who gave life to the Titan, sought solace in what little was left.

But moving forward when all seems lost was in the nature of the SLC 4 crew. They went back to work and found what they believed to be the cause of failure. Corrections were made, and a little under eight months later SLC 4 was ready for another Titan launch.

It was clear on the morning of April 18, 1986: a good day for a launch. This time a Titan 34D-9 was ready to send up a KH-9 photo-reconnaissance satellite.

10:45AM. The Titan headed aloft. Then just above the SLC, the craft erupted into a ball of flame. Debris and toxic propellant showered down on both SLC 4e and SLC 4w. Fortunately, there were no lives lost. But the launch facility was in ruins.

As President Theodore Roosevelt once said, “The credit belongs to the man [or woman] who is actually in the arena, whose face is marred by dust and sweat and blood; who strives valiantly; who errs, who comes short again and again, because there is no effort without error and shortcoming; but who does actually strive to do the deeds; who knows great enthusiasms, the great devotions; who spends himself [or herself] in a worthy cause.”

So strive they did. Just 14 months later, in October 1987, SLC 4e reopened. It went on to host the successful launch of two more Titan 34D’s, as well as many other launches.

SLC 4e’s career is far from over. SpaceX is its new, famous occupant, and if SpaceX CEO and CTO Elon Musk’s goal of Mars colonization becomes reality, SLC 4e, “The Comeback Kid,” and the people there who make it all happen will be on the job time and again, carrying on the tradition of resilience and perseverance for humanity’s multi-planet future.

Dale Hammond is a space enthusiast, working at Vandenberg Air Force Base.


#1 Titan 34 d explosian, slc 4e, 4/18/86;

#2 Titan 34d at slc 4e ;

#3 SLC  4 in the Titan days:

#4 SLC 4 today;  wikimedia

#5 SLC 4e, Falcon Heavy, artists rendition;


It’s Never too Late to Fulfill Your Childhood Dreams (Issue #34)

Guest Blog by Bob Bruner

Bob Bruner is an amateur scientist that has attended all the Case for Mars conferences given by the Mars Underground in the 1980’s and 1990’s and joined the Mars Society at its founding.  This story is a case of an amateur scientist actually having an impact on NASA decisions for its next big mission to Mars, the Mars2020 rover, by suggesting a specific mineral to cache and return to Earth in the 2020’s.

blog 234 deiviant artThe new year is a time many of us look back on what has been accomplished and look forward to the promises the future holds.  I grew up in Des Moines, Iowa, and in 1948, when I turned 10, my father gave me a 3-inch diameter reflecting telescope with a cardboard tube with which to observe the stars and planets.  My uncle gave me a box of rocks and minerals of many shapes and colors.  I spent many a summer evening looking through the telescope, mainly at planets like Jupiter, Saturn, Venus and Mars.  I also collected more rocks and minerals to go with my starter collection.  Little did I know how important collecting rocks and minerals would be in the future.

When I went to college, I wanted to be an astronomer, but I didn’t understand calculus, so I switched my major to business, and spent my entire working life in the business world.  I retired in 2001, but I had continued my interest in astronomy, volunteered at the Denver Museum of Nature and Science in the Space Sciences Department, and joined the Mars Society.

blog 22 MarsAsteroidImpactWhen Dr. Stephen Benner presented his idea that life must have started on Mars and then been brought to Earth on meteorites,  I really liked his way of “thinking outside the box”.  He said that in order to create RNA, the precursor of DNA, you had to have stabilizing minerals such as boron and molybdenum, which were probably not available on early Earth.  The Mars Society Education Department had a blog on this in September, 2013.  I helped with the blog, and as a result, I was able to get into my first scientific meeting with a poster because Dr. Benner remembered me.  The meeting was the Gordon Origin of Life Conference of 2014 in Galveston, Texas.  My poster was entitled “Meteorites and Minerals associated with the Origin of Life”.  I read a lot about the origin of life and picked the meteorites and minerals I thought would be appropriate.  No publication is allowed after a Gordon conference. It is considered a “starter conference” for new grads, post-docs, etc.

In 2014, I re-packaged the exhibit, expanded it, and applied to the 8th International Mars Conference (only held every few years by NASA).  By a lucky coincidence, this conference specifically asked for a contribution from the Origin of Life community, so I hit it just right.  My poster was on display in the courtyard of Caltech, and I attended along with 650 scientists from all over the world, including those who had been my inspiration for many years. I made it into the ISSOL (International Society for the Study of the Origin of Life) and was published on the conference website.  I made many friends in the Mars scientific community.

blog 34 noaaOne of the theories of the Origin of Life is that life started near hydrothermal vents at the bottom of the ocean in environments known as “Lost City” after that discovery in the Atlantic Ocean.  I met a scientist, Dr. Mike Russell of JPL, at the Gordon conference after his lecture, and felt his ideas had a lot of merit. I felt this same process could have happened on Mars. So when NASA held the 1st landing site meeting for the Mars2020 rover, I sent in the idea in an email to the chairman of the meeting. It  was too late, but I could submit it for  the next meeting. This summer the 2nd Landing Site meeting for the Mars2020 rover was held in Pasadena, California just a few miles from Caltech.  Not only was my idea accepted, but I was allowed 10 minutes on the agenda.  I collected all the minerals involved with the process at Lost City called “serpentinization”, and interviewed all the top scientists who had developed this theory over the last 15 years.  Again I got published on the conference website.  The idea is to cache for return to Earth samples of serpentine, a mineral created by serpentinization to examine it for signs of life.

Bob Bruner blog 34So instead of looking through a telescope to spot Martians, like I was trying to do in 1948, I used my rock-collecting skills to assemble exhibits acceptable to NASA in the 21st Century.  I never dreamed this would happen.  But if one keeps on trying, anything is possible.

Post written by Bob Bruner


[Images: Deviant Art, The Economist, NOAA, Bob Bruner, ]

What Does The Mars Society Do? (Issue #33)

By: Nicole Willett

blog 33 aThe latest episode of Neil DeGrasse-Tyson’s Star Talk, featuring, Bill Nye, President of The Planetary Society, Charles Bolden, NASA Administrator, and Astrophysicist, Dr. Michael Shara, was chock full of great information and insight.  While watching, my heart ached for our civilization to understand the importance of a manned mission to Mars.  Charles Bolden stated NASA’s plan is to be on Mars around 2030 with the current budget of half of one percent of the US budget, we believe with more resources and cooperation from various countries and private organizations we could be on Mars sooner and possibly cheaper.  A major reason for needing a human touch on Mars is for exactly what Bill Nye stated which is that a human scientist could do in one minute the job that a robot does in a week, it’s about a ratio of 1:10,000.  The problem was stated clearly by Dr. Michael Shara, “Frankly, we are not as brave as we should be.” These statements are extraordinarily important to be shared with the public.  We are not as brave or as curious as we should be. Dr. Robert Zubrin, President of The Mars Society and one of the bravest men I have ever known, says we could be on Mars in ten years with the proper funding.

Shopping bags, MonbiotAren’t you curious? Is curiosity lost to our civilization for the most part?  Some days I think it is.  I often get asked this question, “What does The Mars Society do?”  This question sometimes frustratingly comes from a place of condescension and rarely a place of curiosity.  I have to remind myself that the work we are doing here is to take humans to another planet, an event that would change human history and that most people unfortunately have no concept of why it is so important. The short answer is:  We are an advocacy group to promote the human exploration and settlement of Mars.  Our goal is to educate the public through our Education Department, bring like-minded people together at chapter meetings and our annual conventions, and promote a human mission to Mars via projects and competitions.  Sounds simple right?  Well, not really. You see, people really like the societal pleasures of who is who, who is wearing who, what team are you for, what kind of car do you drive, what do you do for a living???? On and on this goes.  Meanwhile, billions of people are left uninformed of what is really important: Curiosity, knowledge, and exploration.  Instilling curiosity, providing access to true knowledge of scientific facts, and the goal of Mars exploration by humans, is an important part of what we are trying to accomplish.

blog 33 koolfmIt is frustrating for sure, as a teacher of young people, to see that most are much more interested in the latest phone app than the intellectual curiosity for really learning anything.  The way the educational system is set up is flawed and is partially responsible for the noninterest to learn.  People do not enjoy memorizing things in order to take a test.  People want to LEARN.  Only learning can create critical thinking and curiosity, maybe this is the source of the apathy in America.  I encounter some very curious minds, but sadly too few.  Learning takes place with hands on experience and discussions, not workbooks and vocabulary lessons.  We need to have a strong work force of critical thinkers, not robotic followers.   The Apollo 13 Mission was not saved by people that had been able to get the highest SAT score blog 33 nasabecause they memorized a bunch of facts, those brave scientists were able to quickly and critically think and creatively solve a problem and save the lives of three brave men.  The Mars Society is an organization that is involved in many projects that make an environment conducive to learning by hands-on experience and discussions, which lends itself to creativity and critical thinking.  Going to the Moon took about 400,000 people, going to Mars will take many more.  We need strong minded, willful, brave problem solvers to get to Mars.

So, what does The Mars Society do to move this endeavor forward?  Well, with a lot of patience and a group of very dedicated and passionate volunteers.  The Mars Society was founded by Dr. Robert Zubrin in 1998, stemming from the Mars Underground which was started by Dr. Carol Stoker, NASA, Dr. Chris McKay, NASA, and Dr. Penelope Boston.  The Mars Society is involved in many projects, including but not limited to:  holding annual conventions, an Education Department for public outreach, STEM Education Events, Red Planet Pen (an educational blog), Red Planet Radio (podcast), a Speakers Bureau, having two analogue stations named Mars Desert Research Station and Mars Arctic Research Station, the University Rover Challenge and the Youth Rover Challenge.

blog 33 cuaThe Mars Society will convene the 18th Annual International Mars Society Convention on the campus of the Catholic University of America from August 13-16, 2015.  The annual four-day event brings together key experts, scientists, journalists and policymakers to discuss the latest news on Mars exploration and efforts to promote a humans-to-Mars mission in the coming years. We have many notable speakers, including Dr. Robert Zubrin, President and Founder of the Mars Society, Apollo astronaut Dr. Harrison “Jack” Schmitt will give a plenary address, Dr. Deborah Bass, Deputy Project Scientist for NASA’s Mars 2020 rover, will discuss the planned exploration mission, Dr. Vint Cerf, Vice President and Chief Internet Evangelist for Google, will give a plenary talk about his long-term vision for solar system exploration and the role communications will play in this endeavor, Sam Scimemi, Director for International Space Station (ISS) at NASA Headquarters within the Human Exploration and Operations Mission Directorate, Dr. Pamela G. Conrad, an astrobiologist and mineralogist at NASA’s Goddard Space Flight Center and Deputy Principal Investigator for the Mars Science Laboratory (MSL) mission, will talk about the potential habitability of the planet Mars, and many, many more!
blog 33 mdrsThe Mars Society has two analog research stations.  One is the Mars Desert Research Station (MDRS) and the other is the Mars Arctic Research Station.  Analog Research Stations are laboratories for learning how to live and work on another planet. Each is a prototype of a habitat that will land humans on Mars and serve as their main base for months of exploration in the harsh Martian environment. Such a habitat represents a key element in current human Mars mission planning. Each Station’s centerpiece is a cylindrical habitat, “The Hab,” an 8-meter diameter, two-deck structure mounted on landing struts. Peripheral external structures, some inflatable, may be appended to the hab as well.  College students gain credit by living and working at the MDRS hab for two weeks at a time.

The Mars Society Education Department maintains an educational forum website with resources free to all students, teachers and Mars enthusiasts.  Opportunities for speakers, online or in person, are available to enhance students’ educational experience around the world.  The Speakers Bureau of experienced Mars advocates can be contacted to speak and do a presentation and will either come to you or organize an online event for your group or class.  The website also has an archive of blogs with a vast amount of information about Mars and the spacecraft that have visited the Red Planet.  To enhance all educational materials, The Mars Society has a YouTube Channel that has hundreds of videos of talks from previous conventions.  All of these resources are meant to stimulate minds and allow anyone to learn as much as they can about Mars and what a human mission to Mars entails.

blog 33 urcChuck McMurray, the Mars Society’s Deputy Education Director, launched the Youth Rover Challenge in 2013 which is geared toward middle and high school students.  The rover program consists of two levels of competition to get kids started earlier and also prepare them for participation in the University Rover Challenge held annually at MDRS in Utah.  Grade levels 5 through 12 will be invited to compete in the Youth Rover Challenge.  The University Rover Challenge (URC) was started in 2007 and run by URC director, Kevin Sloan.  It is the world’s premier robotics competition for college students.  Held annually in the desert of southern Utah in the United States, URC challenges student teams to design and build the next generation of Mars rovers that will one day work alongside astronauts exploring the Red Planet.

So, what does The Mars Society do?  All of these things and so much more.  We want the world to know the importance of a human mission to Mars.  The reasons are many, but here are a few that can be found in our Founding Declaration:

We must go for the knowledge of Mars.

We must go for the knowledge of Earth. 

We must go for the challenge. 

We must go for the youth. 

We must go for the opportunity. 

We must go for our humanity. 

We must go for the future.


Humans to Mars as a bridge to the stars…………..

[Image credits: NASA, Guardian, koolfm, NASA, CUA, TMS, TMS]